Blog 1

Random Talk on Random Thoughts

Evaluated a Convolution Integral

| Comments |

Yesterday afternoon, I did a convolution integral to show that a finite sum of i.i.d. $X_i \sim \Exp(\lambda)$ is Gamma distributed.

\[ \begin{aligned} f_{X_{i_1}} * f_{X_{i_2}}(x) =& \int_{-\infty}^{\infty} f_{X_{i_1}}(z) f_{X_{i_2}}(x - z) \ud z \\ =& \int_{0}^{x} (\lambda e^{-\lambda z}) (\lambda e^{-\lambda (x - z)}) \ud z \\ =& \int_{0}^{x} \lambda^2 e^{-\lambda x} \ud z \\ =& \lambda^2 x e^{-\lambda x} \end{aligned} \]

Using the same technique, one can prove the claim by induction. What’s written above is the base case.

\[ \begin{aligned} f_{\sum\limits_{j = 1}^{k + 1} X_{i_j}}(x) =& f_{\sum\limits_{j = 1}^{k} X_{i_j} + X_{i_{k + 1}}}(x) \\ =& f_{\sum\limits_{j = 1}^{k} X_{i_j}} * f_{X_{i_{k + 1}}}(x) \\ =& \int_{-\infty}^{\infty} f_{\sum\limits_{j = 1}^{k} X_{i_j}}(z) f_{X_{i_{k + 1}}}(x - z) \ud z \\ =& \int_{0}^{x} \left (\frac{\lambda^k z^{k - 1} e^{-\lambda z}}{(k - 1)!} \right ) (\lambda e^{-\lambda (x - z)}) \ud z \\ =& \int_{0}^{x} \frac{\lambda^{k + 1} e^{-\lambda x}}{(k - 1)!} z^{k - 1} \ud z \\ =& \frac{\lambda^{k + 1} e^{-\lambda x}}{(k - 1)!} \frac{x^k}{k} \\ =& \frac{\lambda^{k + 1} x^k e^{-\lambda x}}{k!} \end{aligned} \]

Comments